

KALIBRACJA INSTRUMENTÓW TRIMBLE SERII S

Każdy instrument serii S posiada możliwość wyznaczenia przez użytkownika błędów instrumentalnych. Kalibracja wykonana powinna być KAŻDORAZOWO, kiedy:

- Instrument przeszedł procedurę serwisową (przegląd)
- Instrument był transportowany na znaczną odległość
- Wystąpiły znaczne zmiany atmosferyczne

Standardowa procedura serwisowa obejmuje 2 podstawowe etapy:

- 1. Kolimacja i inklinacja
- 2. Kolimacja Autolock

KOLIMACJA I INKLINACJA

1. Rozstawiamy instrument na stabilnym podłożu (pamiętając o odpowiednio szerokim rozstawieniu nóg statywu) i poziomujemy możliwie precyzyjnie w oparciu o libellę elektroniczną.

2. W menu Trimble Access wybieramy Instrument -> Wyrównaj

TZ Zadanie	Funkcje GNSS	HA:146.8451grad VA:101.3577grad
Zmigrodzka	Pozycja	↑ N
🛨 Ulubione	Nawigacja do punktu	Ϋ́
🦰 Dane zadania	Libella elektroniczna	
	Ustawienia EDM	
🌍 Pomiar Podstawo	Obróć do	
🔯 Wprowadź	Joystick	
🧯 Oblicz	Ustawienia celu	
i Pomiar	Ustawienia instrumentu	
눩 Tyczenie	Wyrównaj	20m
instrument	Tryb Podstawowy	

Geotronics Dystrybucja Sp. z o.o. | ul. Centralna 36, 31-586 Kraków NIP 6751516925 | **REGON** 361350832 | **KRS** 0000554199 Sąd Rejonowy dla Krakowa-Śródmieścia | Kapitał zakładowy 5 000,00 zł **Bank:** Bank Pekao S.A. | **Konto:** 45 1240 4852 1111 0010 7364 7239 +48 12 416 16 00

+48 12 416 16 02

➡ biuro@geotronics.com.pl

3. Z listy wybieramy typ wyrównania i przechodzimy Dalej

\equiv	10:00 09/04	>	1 79%		S 1.500	†	+10 1.497	HA:164.0694grad VA:100.9379grad			
Wyrównanie instrumentu 🔶 🛧											
Wybierz typ wyrównania											
\bigcirc I	🔘 Kalibracja kompensatora										
	Kolima	cja i Inl	klinacja								
\bigcirc I	Kolima	cja Aut	olock								
0:	Stała El	DM									
Esc	:							Dalej			

3. Ujrzymy bieżące wartości Kolimacji i Inklinacji. W celu przejścia do ich wyrównania przechodzimy Dalej

10:00 09/04	■ S 9% ■ 1.500 1	+10 HA:164.0693grad VA:100.9379grad	
Kolimacja i Inklinacja			
Bieżące wartości Kolimacja (HA) -0.0006grad Inklinacja 0.0004grad		Kolimacja (VA) 0.0000grad	
Esc		Dalej	

4. W celu wyznaczenie **błędu kolimacji** znajdujemy jednoznacznie identyfikowalny (w pionie i poziomie) punkt na odległości ok. **100m od instrumentu**.

Może nam do tego posłużyć tarcza celownicza, która znajduje się na wyposażeniu każdego z instrumentów serii S. Punkt (tarcza) powinien znajdować się na wysokości celowej instrumentu (kąt zenitalny powinien zawierać się w zakresie 95^g – 105^g).

Bank: Bank Pekao S.A. | Konto: 45 1240 4852 1111 0010 7364 7239

5. Celujemy optycznie (okiem) na punkt, wykorzystując do precyzyjnego wycelowania śruby ruchu leniwego. Po wycelowaniu naciskamy przycisk Zmierz.

Liczba Obserwacji w P1 zmieni się z 0 na 1.

10:00 09/04 Ø	s +10 1.500 11 1.497 HA:164.0693gr	grad VA:100.9379grad	
Kolimacja HA VA			
Obserwacje w P1 O	Obserwacje w P2 0		
	10:02 09/04	S +10 1.500 11 1.497 HA:146.8449grad	VA:101.3588grad
	Kolimacja HA VA		
Esc P1/P2	Obserwacje w P1 1	Obserwacje w P2 0	

6. Zjeżdżamy z punktu, celujemy na niego ponownie i raz jeszcze naciskamy Zmierz, zwiększając liczbę obserwacji w P1 z 1 na 2, czyli niezbędnego minimum. Trimble Access wyliczy wstępnie błąd kolimacji (dHA).

Od tego momentu możemy wykonywać kolejne obserwacje w celu uzyskania dokładniejszych wyników, lub przejść do pomiarów w drugim położeniu lunety, klikając w P1/P2 na dolnej belce (tuż obok przycisku Esc).

	\equiv	10:02 09/04	5	1 79%		S 1.500	† 11	+10 1.497	HA:146.8448grad	VA:101.3	3588grad		
	Kolin	nacja HA	A VA										
	Obser 2 σHA 0.000 σVA	wacje w P 01grad	1					Obserwacje 0	w P2				
	Es	c	Ρ	1/P2							Zmierz		
							_				GEOTRO DYSTRYBUCJA	DNICS	PROFIGEO.PL ROZVIĄZANIA POMIABOVE
Geotronics Dystrybucja Sp. NIP 6751516925 REGON 367 Sąd Rejonowy dla Krakowa-5	z o.o. 35083 ródmi	ul. Cer 32 Ki ieścia '	ntral RS 00 Kap	na 36. 0005! itał z	5, 31-5 54199 akłac	586 Kra) lowy 5	ıków 000	,00 zł			+48 12 +48 12	416 16 00 416 16 02	

biuro@geotronics.com.pl

7. Po zmianie położenia lunety powtarzamy czynności z punku 5 (celowanie, pomiar) **co najmniej 2 razy** (a nie mniejszą ilość razy, niż w położeniu 1).

Po wykonaniu pomiarów, wyznaczony zostanie nowy **Błąd kolimacji**. Trimble Access zapyta, czy przejść do pomiaru **Inklinacji**. Potwierdzamy, wybierając **Tak**.

	s 9% 1.500 1 1	+10 HA:146.8439grad \	VA:101.3577grad		
Kolimacja i Inklinacja					
Obserwacje w P1 2 oHA 0.0001grad oVA	Obser 2 oHA 0.00 oVA	racje w P2 7grad			
0.0000grad	0.00	1grad 103 /04 79%	S 🕁 1.500 1	+10 HA:146.8451grad VA:101.3	577grad
Esc	Оbserwac 2 σНА 0.0001 σVA 0.0000	• w P1 Pomiar kolimacji zako	Obser pńczony. Mierzyć ink	rwacje w P2 klinację?	1
	Esc	Tak		Nie	Dalej

8. W celu wyznaczenie **błędu inklinacji** procedura jest identyczna, z jedną różnicą - znajdujemy jednoznacznie identyfikowalny (w pionie i poziomie) punkt na odległości ok **50 - 100 m od instrumentu**.

Punkt (w tym przypadku raczej nie tarcza) powinien znajdować się znacznie powyżej lub znacznie poniżej osi celowej instrumentu (kąt zenitalny powinien być <85^g lub >115^g).

Trimble.
Autoryzowany Dystrybutor

9. **Celujemy optycznie** (okiem) na punkt, wykorzystując do precyzyjnego wycelowania śrub ruchu leniwego. Po wycelowaniu naciskamy przycisk **Zmierz**. Następnie zjeżdżamy z punktu i celujemy na niego ponownie i raz jeszcze naciskamy **Zmierz**.

Czynność powtarzamy **co najmniej 2 razy** (nie mniej niż 2 odczyty w każdym położeniu lunety). Następnie naciskamy **P1/P2** (opcja na dolnej belce).

Instrument zmienia położenie lunety, ustawiając się na punkcie zgodnie z obecnie wyznaczonymi wartościami błędów kolimacji i inklinacji. W drugim położeniu lunety czynność powtarzamy (celowanie, odczyt, celowanie, odczyt – co najmniej dwukrotnie, a nie mniejszą ilość razy niż w położeniu 1). Po ukończeniu testu wyznaczony został na nowo Błąd inklinacji.

\equiv	10:04 09/04	5	1 79%	•	S 🕁 1.500 1	+10 1.497	HA:146.8451grad VA:101	.3577grad
Kolim	acja HA	VA						
Bież	ące war	tości						
Kolim	acja (HA)					Kolimacja (VA	A)	
-0.00	06grad					0.0000grad	ł	
Now	e warto	ści						
Kolim	acja (HA)					Kolimacja (VA	A)	
0.00	01grad					-0.0004gra	d	
Es	•							Akceptuj

10. Zatwierdzamy wyznaczone wartości klikając w Akceptuj.

KOLIMACJA AUTOLOCK

1. Po wykonaniu testu Kolimacji i Inklinacji możemy przejść do **Kolimacji Autolock**. Wyznaczenie parametru kolimacji Autolock pozwoli uniknąć problemów z automatycznym celowaniem.

W celu wykonania kolimacji Autolock rozstawiamy na odległości ok. **100 m** lustro, dla którego ma zostać wykonane wyrównanie. Zazwyczaj kalibrację wykonuje się na lustro, które służyć nam będzie do precyzyjnych prac, gdyż przy pomiarach sytuacyjno-wysokościowych błędy wynikające ze zmiany lustra są zaniedbywalne (z reguły jest to wartość <1mm).

Lustro powinno stać stabilnie, dlatego do tego celu najlepiej wykorzystać statyw z zestawem poziomowania i centrowania. Lustro powinno znajdować się możliwie blisko wysokości osi celowej instrumentu.

2. W menu Trimble Access ponownie wybieramy **Instrument** → **Wyrównaj**, lecz tym razem z listy wybieramy **Kolimację Autolock**. Ujrzymy bieżące wartości Kolimacji Autolock. Po kliknięciu w **Dalej** rozpocznie się procedura, która przebiega automatycznie – instrument celuje na lustro w 1 położeniu, następnie przerzuca lunetę do 2 położenia i ponownie celuje. Na tej podstawie wyznacza parametr **Kolimacji Autolock**.

UWAGA!

Aby sprawdzić poprawność wykonania kalibracji Autolock, należy **wyłączyć funkcję Autolock** z poziomu menu instrumentu (tak, aby nie reagował na pojawiające się w lunecie lustro), a następnie wykonać celowanie optyczne. **Włączamy Autolock** - instrument powinien przesunąć się o pewien kąt w poziomie i pionie (wynikający z kalibracji Autolock), a po ponownym wyłączeniu funkcji Autolock instrument powinien automatycznie przesunąć się do miejsca, w które został wycelowany optycznie (ilustracja poniżej).

POWODZENIA!:)

Geotronics Dystrybucja Sp. z o.o. | ul. Centralna 36, 31-586 Kraków NIP 6751516925 | **REGON** 361350832 | KRS 0000554199 Sąd Rejonowy dla Krakowa-Śródmieścia | Kapitał zakładowy 5 000,00 zł **Bank:** Bank Pekao S.A. | Konto: 45 1240 4852 1111 0010 7364 7239 GEOTRONICS PROFIGEO.PL

+48 12 416 16 00

+48 12 416 16 02

☑ biuro@geotronics.com.pl